Skip to content

Basic material types for PCBs

The base materials of printed circuit boards play a decisive role in determining their electrical properties, mechanical stability and thermal performance. Different types of material offer different advantages depending on the requirements of an application.

The choice of base material for a printed circuit board is crucial and should be made carefully according to the specific requirements of the application. It is important to consider the electrical, thermal and mechanical properties of the different materials to ensure the expected performance and reliability.

Type Finish Use UL 94 Dielectricity εR Remark
FR-4 Glass-epoxy resin mesh 1L, 2L, ML V-0 4,3-4,8 Standard material Low/mid Tg
FR-4, halogenfree Glass-epoxy resin mesh 1L, 2L, ML V-0 4,7 High Tg
FR-2 Hard paper 1L, 2L V-1 4,1 Not plated through
CEM-1 Glass-hard paper-epoxy resin 1L, 2L V-0 4,2 Not plated through
CEM-3 Glass-fleece epoxy resin 1L, 2L V-0 5,0 punchable, elso HTC (High Thermal Conductivity)
Teflon Ceramic polymer RF V-0 2,6 z.B. Rogers, Taconic
Glass-polyphenyl ether-resin RF V-0 2,8 e.g. Gigaver
RF applications 1L, 2L, ML V-0 e.G. Rogers, GIL, etc.
Polyimide 1L, 2L, Flex V-0 3,8 also available glass fiber reinforced
Aluminum 1L, 2L, ML V-0 e.g. Alloy, Bergquist

High-Tg

The glass transition temperature (Tg) is an important parameter of the base material, which indicates the temperature at which the resin matrix changes from the glassy, brittle state to the soft-elastic state.

In addition to the effects of all kinds of weather, extreme heat is a natural enemy of printed circuit boards. If circuit boards are subjected to excessive thermal stress, effects such as delamination, Z-axis expansion and material softening can lead to failures. It is important to determine the area of application of the assemblies in good time in order to use a suitable material for continuous operation in extreme environments.

The Tg specifies an upper limit value at which the compound starts to flow. This means a softening of the material and should always be prevented. The Tg is therefore not the value of the maximum operating temperature, but can only be passed by the material for a very short time. Materials with the currently available glass flow temperature value are usually up to Tg 260° Celsius, in rare cases very high-priced polyimides are available up to Tg 350°C. Continuous use up to 200° Celsius is possible here. For comparison, normal FR4 has a Tg of only 135°C and a continuous operating temperature of approx. 110°C.
The guide value for permanent thermal load (continuous operating temperature) is an operating temperature of approx. 20-25°C below the Tg value.

  • Long delamination resistance
  • Low Z-axis expansion
  • High glass flow temperature value (Tg)
  • Chemical resistance
  • High temperature resistance
Material Tg value COT* UL MWT
FR-4 Standard Tg 130/135 110°C ≤130°C
FR4 Medium Tg 150 130°C 130°C
FR4 High Tg 170/180 150°C 130°C
Polyimide Tg 250 230°C 200°C

*COT = continuous operating temperature
*UL MWT = Maximum working temp. as per UL

Tolerances of base material

Permissible thicknesses of copper-clad base materials

Thickness and tolerances for laminates according to IPC-4101
Nominal thickness Class A/K Class B/L Class C/M Class D
0,025 bis 0,119 ±0,025 ±0,018 ±0,013 +0,025/-0,013
0,120 bis 0,164 ±0,038 ±0,0025 ±0,018 +0,030/-0,018
0,165 bis 0,299 ±0,050 ±0,038 ±0,025 +0,038/-0,050
0,300 bis 0,499 ±0,064 ±0,050 ±0,038 +0,050/-0,038
0,500 bis 0,785 ±0,075 ±0,064 ±0,050 +0,064/-0,050
0,786 bis 1,039 ±0,165 ±0,100 ±0,075 n/a
1,040 bis 1,674 ±0,190 ±0,130 ±0,075 n/a
1,675 bis 2,564 ±0,230 ±0,180 ±0,100 n/a
2,565 bis 3,579 ±0,300 ±0,230 ±0,130 n/a
3,580 bis 6,350 ±0,560 ±0,300 ±0,150 n/a

All dimensions in mm.

Class A, B, C are used for measuring the dielectric without copper. Class K, L, M include copper when measured. Class D is typically used for very thin materials after the etching process.

Class B/L is the standard for PCB production. Above 0.8 mm thickness class L applies, below class B.

Glass fiber CEM-3, FR-4
DIN EN 60249 NEMA LI-1 MIL-S-13949
Nominal thickness Normal Tight Class 1 Class 2 Class 1 Class 2 Class 3 Class 5
0,5 - ±0,07 - - ±0,06 ±0,05 ±0,04 -0,04 | +0,05
0,8 ±0,15 ±0,09 ±0,17 ±0,10 ±0,17 ±0,10 ±0,08 -0,08 | +0,09
1,0 ±0,17 ±0,11 - - ±0,17 ±0,10 ±0,08 -0,08 | +0,09
1,2 ±0,18 ±0,12 ±0,19 ±0,13 ±0,19 ±0,13 ±0,08 -0,08 | +0,09
1,5 ±0,20 ±0,14 ±0,19 ±0,13 ±0,19 ±0,13 ±0,08 -0,08 | +0,09
2,0 ±0,23 ±0,15 - - ±0,23 ±0,18 ±0,10 -0,10 | +0,11
2,4 ±0,25 ±0,18 ±0,23 ±0,18 ±0,23 ±0,18 ±0,10 -0,10 | +0,11
3,2 ±0,30 ±0,20 ±0,31 ±0,23 ±0,31 ±0,23 ±0,13 -0,13 | +0,14

All dimensions in mm.

Hard paper FR-2, FR-3, CEM-1
DIN EN 60249 NEMA LI-1 MIL-S-13949
Nominal thickness Normal Tight Class 1 Class 2 Class 1 Class 2 Class 3 Class 5
0,8 ±0,09 - ±0,11 ±0,08 - - - -
1,0 ±0,11 - - - - - - -
1,2 ±0,12 - ±0,14 ±0,09 - - - -
1,5 ±0,14 - ±0,15 ±0,10 - - - -
2,0 ±0,15 - - - - - - -
2,4 ±0,18 - ±0,18 ±0,13 - - - -
3,2 ±0,20 - ±0,23 ±0,15 - - - -

All dimensions in mm.

Click to access the login or register cheese